Generative artificial intelligence tools in higher education students

Authors

DOI:

https://doi.org/10.61273/neyart.v3i1.90

Keywords:

Generative artificial intelligence, learning, usage, higher education students

Abstract

This article evaluates the topic of the use of generative artificial intelligence (GAI) tools in higher education students at the Instituto Tecnológico de Durango. A Likert scale survey was applied to a sample of 452 students using an instrument that had a Cronbach reliability of 0.77. A component factor analysis was applied through Kaiser-Meyer-Olkin and Bartlett tests that assessed the validity of the instrument. Three dimensions were evaluated: impact and benefit of GAI; familiarity and perception; ethical considerations, privacy and future aspects. The results highlighted that students did find usefulness and a positive impact on their learning and a moderate familiarity with the tools, although they showed indifference towards ethical aspects, privacy and future aspects with the use of GAI. The nonparametric Kruskal-Wallis test revealed that there are no significant differences between the professional careers they study regarding the use of these tools. It is recommended to replicate the study in other institutions to explore broader patterns. The findings emphasized that while IAG improves productivity and learning, there is a need to promote ethical and supervised use of these technologies in educational settings.

Downloads

Download data is not yet available.

Author Biographies

Rubén Pizarro Gurrola , National Technological of Mexico

Graduated in Computer Science in 1991 from the Durango Institute of Technology (ITD); Master's Degree in Information Systems Administration (MAI) in 1995 from the Monterrey Institute of Technology and Higher Education (ITESM); teacher since 1996 in undergraduate subjects at ITD and master's degrees at the Anglo-Spanish College and the Mexican Institute for Executive Training (IMFE). PRODEP register and academic leader of Data Science and Artificial Intelligence.

Ana Louisa Moorillón Soto, National Technological of Mexico

Computer Systems Engineer from the Durango Institute of Technology; Master's Degree in Information Systems and Technology Management from the Anglo-Spanish University Institute. Currently a teacher in the IT Department of Systems and Computing for the last 14 years; head of the Office of Institutional Development for the last 22 years at the Technological Institute of Durango; candidate for PRODEP and member of the academic body of Data Science and Artificial Intelligence.

Araceli Soledad Domínguez Flores, National Technological of Mexico

Graduated in Computer Science from the Durango Institute of Technology (ITD) in 1992; Master's Degree in Administrative Engineering from the Anglo-Spanish University Institute in 2023; lecturer in the ITD Department of Systems and Computing since 1997; candidate for PRODEP and member of the academic body of Data Science and Artificial Intelligence.

Jeorgina Calzada Terrones, National Technological of Mexico

Degree in Computer Science from the Technological Institute of Durango 1989; Master's Degree in Higher Education with an emphasis in Teaching from the Autonomous University of Campeche 2010. Teacher and researcher at TecNM since 1990. Systems and Computing Coordinator for 10 years and head of the Department of the Division of Professional Studies at ITD from 2022 to date; candidate for PRODEP and member of the academic body of Data Science and Artificial Intelligence.

José Gabriel Rodríguez Rivas, National Technological of Mexico

Graduated in Computer Science from the Durango Institute of Technology in 1996; Master's Degree in Information Technology from UNID in 2012; PhD in Computer Systems from the University of the South in 2022. Lecturer and Researcher in the Department of Systems and Computing at the Durango Institute of Technology since 2009. Lecturer at master's level at the Mexican Institute of Executive Training (IMFE); PRODEP registration, SNI candidate and member of the Data Science and Artificial Intelligence academic body.

References

Alpizar Garrido, L. O., & Martínez Ruiz, H. (2024). Perspectiva de estudiantes de nivel medio superior respecto al uso de la inteligencia artificial generativa en su aprendizaje. Ride Revista Iberoamericana para la Investigación y el Desarrollo Educativo, 14(28). doi:https://doi.org/10.23913/ride.v14i28.1830 DOI: https://doi.org/10.23913/ride.v14i28.1830

Anderson, D., Sweneey, D., & Williams, T. (2008). Estadística para administración y economía (10 ed.). D.F., México: Cengage Learning Editores S.A. de C.V.

Angles Canlla, O. L., & Angles Canlla, V. E. (2024). Desafíos y oportunidades del uso de la IA en la docencia universitaria desde una perspectiva ética. Revista Latinoamericana de Ciencias Sosciales y Humanidades LATAM, 377. DOI: https://doi.org/10.56712/latam.v5i5.2614

Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of Psychology. American Psychological Association APS, 77-85. DOI: https://doi.org/10.1111/j.2044-8317.1950.tb00285.x

Corredera, J. R. (2023). Inteligencia Artificial Generativa. Anales de la Real Academia de Doctores de España. , Volumen 8, número 3 – 2023, páginas 475-489 .

García Peñalvo, F. J., Llorens Largo, F., & Vidal, J. (2024). La nueva realidad de la educación ante los avances de la inteligencia artificial generativa. (A. I. Distancia, Ed.) RIED-Revista Iberoamericana de Educación a Distancia, 27(1). doi:https://doi.org/10.5944/ried.27.1.37716 DOI: https://doi.org/10.5944/ried.27.1.37716

García Sánchez, O. V. (Junio de 2023). Uso y Percepción de ChatGPT en la Educación Superior. (U. A. Sinaloa, Ed.) RITI Journal, 11(23). doi:https://doi.org/10.36825/RITI.11.23.009 DOI: https://doi.org/10.36825/RITI.11.23.009

Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, M. (2010). Metodología de la Investigación. McGrawn Hill.

Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, M. d. (2014). Metodología de la Investigación. México: McGraw Hill Education.

Hollander, M., Wolfe, D. A., & Chicken, E. (2013). Nonparametric Statistical Methods (3rd ed.). John Wiley & Sons.

Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika. APA PsycNet. American Psychological Association, 31-36. doi:https://doi.org/10.1007/BF02291575 DOI: https://doi.org/10.1007/BF02291575

Leslie, K. (1965). Survery Sample. John Wiley & Sons.

López Aguado, M., & Gutiérrez Provecho, L. (2019). Cómo realizar e interpretar un análisis factorial exploratorio utilizando SPSS. (U. d. ICE, Ed.) Revista d'Innovació i Recerca en Educació. ISSN: 2013-2255. Obtenido de file:///C:/Users/Admin/Downloads/27057-Text%20de%20l'article-61418-4-10-20190701.pdf

Martínez González, M. A. (Septiembre de 2023). Uso responsable de la inteligencia artificial en estudiantes universitarios: Una mirada recnoética. (C. d. Educativos, Ed.) Revista Boletín REDIPE, 12(9), 172-178. Recuperado el 15 de Abril de 2024 DOI: https://doi.org/10.36260/rbr.v12i9.2008

Menacho Ángeles, M. R., Pizarro Arancibia, L. M., Osorio Menacho, J. A., Osorio Menacho, J. A., & León Pizarro, B. L. (2024). Inteligencia artificial como herramienta en el aprendizaje autónomo de los estudiantes de educación superior. Revista INVECOM "Estudios trasdiciplinarios en comunicación y sociedad, 4(2). Recuperado el 5 de Abril de 2024, de www.revistainvecom.org

Niño Carrasco, S. A., Castellanos Ramírez, J. C., Perezchica Vega, J. E., & Sepúlveda Rodríguez, J. A. (15 de 01 de 2025). Percepciones de estudiantes universitarios sobre los usos de inteligencia artificial en educación. Revista Fuentes, 27(1), 94-106. Obtenido de https://doi.org/10.12795/revistafuentes.2025.26356

Párraga Rocero, W. J., Vargas Bálcazar, K. S., Rocero Benavides, M. M., Palacios Vaicilla, T. E., & Capelo Andrade, S. S. (2024). La inteligencia artificial ChatGPT y su influencia en los resultados de aprendizaje de los estudiantes de educación básica superior. Revista Latinoamericana de Ciencias Sociales y Humanidades LATAM, 2290. DOI: https://doi.org/10.56712/latam.v5i3.2195

Pérez, E., & Medrano, L. (2010). Análisis Factorial Exploratorio: Bases Conceptuales y Metodológicas. Revista Argentina de Ciencias del Comportamiento (RACC), 58-66.

Posit Cloud. (2024). Friction free data science. Obtenido de R Studio Cloud: https://posit.cloud/

Quijano García, J. E. (2024). Desarrollo de un modelo de evaluación para medir el impacto de las herramientas generativas de texto basadas en inteligencia artificial en la educación superior. Trabajo de grado presentado como requisito para optar al título de Magíster en Gerencia de Sistemas de Información y Proyectos Tecnológicos. Bogotá, Colombia: Universidad Ean.

Rojas Villafuerte, Á. V. (2024). Actitudes y uso de IAs generativas de texto entre estudiantes universitarios. Universidad Estatal del Sur de Manabí. Facultad de Ciencias de la Salud carrera de Enfermería. Jipijapa, Manabí, Ecuador.

Salguero Barba, N. G., & García Salguero, C. P. (2024). Gestión del conocimiento basada en la inteligencia artificial para la transformación de las instituciones educativas. Revista Latinoamericana de Ciencias Sociales y Humanidades LATAM, 1713. DOI: https://doi.org/10.56712/latam.v5i3.2156

art4

Published

2025-04-15

Crossmark

Crossmark Policy Page

How to Cite

Pizarro Gurrola , R., Moorillón Soto, A. L., Domínguez Flores, A. S., Calzada Terrones, J., & Rodríguez Rivas, J. G. (2025). Generative artificial intelligence tools in higher education students. Revista NeyArt, 3(1), 65–88. https://doi.org/10.61273/neyart.v3i1.90

Issue

Section

Artículos